nama : DERI FITRAH SARI
no.bp : 0901082051
1. pembuktian mengenai hukum-hukum dengan menggunakan tabel kebenaran... yang mana hukum tersebut adalah..:
hukum aljabar bolean
1.Hukum Komutatif
(a)A + B = B + A
A B A+B B+A
0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1
(b) A B = B A
A B A.B B.A
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1
2.Hukum Asosiatif
(a)(A + B) + C = A + (B + C)
A B C A+B B+C (A+B)+C A+(B+C)
0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 1 0 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1
(b)(A B) C = A (B C)
A B C A.B B.C (A.B)C A(B.C)
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 1 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 0
1 1 0 1 0 0 0
1 1 1 1 1 1 1
3.Hukum Distributif
(a) A (B + C) = A B + A C
A B C B+C A.B A.C A(B+C) A.B+A.C
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 1 1 1 1 1
(b) A + (B C) = (A + B) (A + C)
A B C A+B A+C B.C A+(B.C) (A+B)(A+C)
0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 1 1 1 1
1 0 0 1 1 0 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 0 1 1
1 1 1 1 1 1 1 1
4.Hukum Identity
(a) A + A = A
A A A+A <=> A
0 0 0 0
1 1 1 1
(b) A A = A
A A A.A <=> A
0 0 0 0
1 1 1 1
5.
(a) A B b.inv A.B A.Binv <=> A
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 1 1 1
1 1 0 1 0 1 1
(b)
A B B(inv) A+B A+B(inv) <=> A
0 0 1 0 1 0 0
0 1 0 1 0 0 0
1 0 1 1 1 1 1
1 1 0 1 1 1 1
6.Hukum Redudansi
(a) A + A B = A
A B A.B A+A.B <=> A
0 0 0 0 0
0 1 0 0 0
1 0 0 1 1
1 1 1 1 1
(b)A (A + B) = A
A B A+B A(A+B) <=> A
0 0 0 0 0
0 1 1 0 0
1 0 1 1 1
1 1 1 1 1
7.
(a) 0 + A = A
A 0 A+0 <=> A
1 0 1 1
0 0 0 0
(b) 0 A = 0
A 0 A.0 <=> 0
1 0 0 0
0 0 0 0
8.
(a) 1 + A = 1
A 1 A+1 <=> 1
0 1 1 1
1 1 1 1
(b)1 A = A
A 1 1.A <=> A
0 1 0 0
1 1 1 1
9.
(a)
A A(inv) 1 <=> 1
1 0 1 1
0 1 1 1
(b)
A A(inv) <=> 0
0 1 0 0
1 0 0 0
10.
(a)
A B A(inv)A(inv)B A+A(inv) B A+B
0 0 0 0 0
0 1 1 1 1
1 0 1 0 1
1 1 1 0 1
(b)
A B A(inv) A+B A.B A(A(inv)+B)
0 0 1 1 0 1 1 0 1 1 1 0
0 1 1 0 1 0 0 0 1 1 1 0
1 0 0 1 1 0 0 0 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 1
11.TheoremaDe Morgan's
(a)
A B A(invers) B(invers) A+B (A+B)invers A(invers) B(invers)
0 0 1 1 0 1 1
0 1 1 0 1 0 0
1 0 0 1 1 0 0
1 1 0 0 1 0 0
(b)
A B A(invers) B(invers) A B (AB)invers A(invers)+B(invers)
0 0 1 1 0 1 1
0 1 1 0 0 1 1
1 0 0 1 0 1 1
1 1 0 0 1
Minggu, 18 April 2010
tugas 4
Diposting oleh deriko di 22.56 0 komentar
Label: :
Sabtu, 10 April 2010
tugas 3
Tabel kebenaran gerbang XOR dengan 3 input
INPUT | OUTPUT | ||||
A | B | C | Q | ||
0 | 0 | 0 | 0 | ||
0 | 0 | 1 | 1 | ||
0 | 1 | 0 | 1 | ||
0 | 1 | 1 | 1 | ||
1 | 0 | 0 | 1 | ||
1 | 0 | 1 | 1 | ||
1 | 1 | 1 | 0 | ||
|
|
|
|
|
|
Tabel kebenaran gerbang XOR dengan 4 input
INPUT | OUTPUT | |||
A | B | C | D | Q |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 0 |
|
Tabel kebenaran XOR dengan 5 input
INPUT | OUTPUT | ||||
A | B | C | D | E | Q |
0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 1 |
1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 0 |
kesimpulan ;
grerbang Xor mengeluarkan input satu bila input satunya ganjil..
input bernilai nol bila input yang dim....asuk kan berbeda
Diposting oleh deriko di 02.03 0 komentar
Langganan:
Postingan (Atom)